Mechanics of atoms and fullerenes in single - walled carbon nanotubes . II . Oscillatory behaviour

نویسندگان

  • BARRY J. COX
  • NGAMTA THAMWATTANA
چکیده

The discovery of carbon nanotubes and C60 fullerenes has created an enormous impact on possible new nanomechanical devices. Owing to their unique mechanical and electronic properties, such as low weight, high strength, flexibility and thermal stability, carbon nanotubes andC60 fullerenes are of considerable interest to researchers frommany scientific areas. One aspect that has attracted much attention is the creation of high-frequency nanoscale oscillators, or the so-called gigahertz oscillators, for applications such as ultrafast optical filters and nano-antennae. While there are difficulties for micromechanical oscillators, or resonators, to reach a frequency in the gigahertz range, it is possible for nanomechanical systems to achieve this. This study focuses on C60–single-walled carbon nanotube oscillators, which generate high frequencies owing to the oscillatorymotion of the C60 molecule inside the single-walled carbon nanotube. Using the Lennard-Jones potential, the interaction energy of an offsetC60molecule inside a carbonnanotube is determined, so as to predict its position with reference to the cross-section of the carbon nanotube. By considering the interaction force between the C60 fullerene and the carbon nanotube, this paper provides a simple mathematical model, involving two Dirac delta functions, which can be used to capture the essential mechanisms underlying such gigahertz oscillators. As a preliminary to the calculation, the oscillatory behaviour of an isolated atom is examined. The new element of this study is the use of elementarymechanics and appliedmathematical modelling in a scientific context previously dominated bymolecular dynamical simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanics of atoms and fullerenes in single - walled carbon nanotubes . I . Acceptance and suction energies

Owing to their unusual properties, carbon nanostructures such as nanotubes and fullerenes have caused many new nanomechanical devices to be proposed. One such application is that of nanoscale oscillators which operate in the gigahertz range, the so-called gigahertz oscillators. Such devices have potential applications as ultrafast optical filters and nanoantennae.While there are difficulties in...

متن کامل

Coupled Axial-Radial Vibration of Single-Walled Carbon Nanotubes Via Doublet Mechanics

This paper investigates the coupled axial-radial (CAR) vibration of single-walled carbon nanotubes (SWCNTs) based on doublet mechanics (DM) with a scale parameter. Two coupled forth order partial differential equations that govern the CAR vibration of SWCNTs are derived. It is the first time that DM is used to model the CAR vibration of SWCNTs. To obtain the natural frequency and dynamic respon...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Functionalised endohedral fullerenes in single-walled carbon nanotubes.

Atomically thin carbon nanotubes serve as transparent-test tubes for individual molecules of functionalised endohedral fullerenes. Aberration-corrected transmission electron microscopy reveals the complex dynamic behaviour of these molecules at the atomic level, and it sheds light on the mechanism of their encapsulation into nanotubes.

متن کامل

Molecular Dynamics in Formation Process of SWNTs

The formation mechanism of single-walled carbon nanotubes (SWNTs) was studied with the molecular dynamics simulation. Starting from randomly distributed carbon and Ni atoms, random cage structures of carbon atoms with a few Ni atoms were obtained after 6 ns simulation. Ni atoms on the random cage prohibited the complete closure and anneal of the cage structure into the fullerene structure. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008